skip to main content


Search for: All records

Creators/Authors contains: "Floy, Martha E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spatiotemporally controlled presentation of morphogens and elaborate modulation of signaling pathways elicit pattern formation during development. Though this process is critical for proper organogenesis, unraveling the mechanisms of developmental biology have been restricted by challenges associated with studying human embryos. Human pluripotent stem cells (hPSCs) have been used to model development in vitro, however difficulties in precise spatiotemporal control of the cellular microenvironment have limited the utility of this model in exploring mechanisms of pattern formation. Here, a simple and versatile method is presented to spatially pattern hPSC differentiation in 2‐dimensional culture via localized morphogen adsorption on substrates. Morphogens including bone morphogenetic protein 4 (BMP4), activin A, and WNT3a are patterned to induce localized mesendoderm, endoderm, cardiomyocyte (CM), and epicardial cell (EpiC) differentiation from hPSCs and hPSC‐derived progenitors. Patterned CM and EpiC co‐differentiation allows investigation of intercellular interactions in a spatially controlled manner and demonstrate improved alignment of CMs in proximity to EpiCs. This approach provides a platform for the controlled and systematic study of early pattern formation. Moreover, this study provides a facile approach to generate 2D patterned hPSC‐derived tissue structures for modeling disease and drug interactions.

     
    more » « less
  2. Abstract

    Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell‐derived CFBs, epicardial (EpiC‐FB), and second heart field (SHF‐FB) impacts transcriptional and functional properties. Both EpiC‐FBs and SHF‐FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell‐derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC‐FBs exhibiting higher stress‐induced activation potential akin to myofibroblasts and SHF‐FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC‐FBs have utility in modeling fibrotic diseases while SHF‐FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection.

     
    more » « less
  3. Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are immature in their structure and function, limiting their potential in disease modeling, drug screening, and cardiac cellular therapies. Prior studies have demonstrated that coculture of hPSC‐derived CMs with other cardiac cell types, including endothelial cells (ECs), can accelerate CM maturation. To address whether the CM differentiation stage at which ECs are introduced affects CM maturation, the authors coculture hPSC‐derived ECs with hPSC‐derived cardiac progenitor cells (CPCs) and CMs and analyze the molecular and functional attributes of maturation. ECs have a more significant effect on acceleration of maturation when cocultured with CPCs than with CMs. EC coculture with CPCs increases CM size, expression of sarcomere, and ion channel genes and proteins, the presence of intracellular membranous extensions, and chronotropic response compared to monoculture. Maturation is accelerated with an increasing EC:CPC ratio. This study demonstrates that EC incorporation at the CPC stage of CM differentiation expedites CM maturation, leading to cells that may be better suited for in vitro and in vivo applications of hPSC‐derived CMs.

     
    more » « less